Probabilistic Ontology Trees for Belief Tracking in Dialog Systems

Neville Mehta
Oregon State University
mehtane@eecs.oregonstate.edu

Rakesh Gupta
Honda Research Institute
rgupta@hra.com

Antoine Raux
Honda Research Institute
araux@hra.com

Deepak Ramachandran
Honda Research Institute
dramachandran@hra.com

Stefan Krawczyk
Stanford University
stefank@cs.stanford.edu

Abstract

We introduce a novel approach for robust belief tracking of user intention within a spoken dialog system. The space of user intentions is modeled by a probabilistic extension of the underlying domain ontology called a probabilistic ontology tree (POT). POTs embody a principled approach to leverage the dependencies among domain concepts and incorporate corroborating or conflicting dialog observations in the form of interpreted user utterances across dialog turns. We tailor standard inference algorithms to the POT framework to efficiently compute the user intentions in terms of m-best most probable explanations. We empirically validate the efficacy of our POT and compare it to a hierarchical frame-based approach in experiments with users of a tourism information system.

1 Introduction

A central function of a spoken dialog system (SDS) is to estimate the user’s intention based on the utterances. The information gathered across multiple turns needs to be combined and understood in context after automatic speech recognition (ASR). Traditionally, this has been addressed by dialog models and data structures such as forms (Goddeau et al., 1996) and hierarchical task decomposition (Rich and Sidner, 1998). To formalize knowledge representation within the SDS and enable the development of reusable software and resources, researchers have investigated the organization of domain concepts using IS-A/HAS-A ontologies (van Zanten, 1998; Noh et al., 2003).

Because the SDS only has access to noisy observations of what the user really uttered due to speech recognition and understanding errors, belief tracking in speech understanding has received particular attention from proponents of probabilistic approaches to dialog management (Bohus and Rudnicky, 2006; Williams, 2006). The mechanism for belief tracking often employs a Bayesian network (BN) that represents the joint probability space of concepts while leveraging conditional independences among them (Paek and Horvitz, 2000). Designing a domain-specific BN requires significant effort and expert knowledge that is not always readily available. Additionally, real-world systems typically yield large networks on which inference is intractable without major assumptions and approximations. A common workaround to mitigate the intensive computation of the joint distribution over user intentions is to assume full conditional independence between concepts which violates the ground truth in most domains (Bohus and Rudnicky, 2006; Williams, 2006).

We propose a novel approach to belief tracking for an SDS that solves both the design and tractability issues while making more realistic conditional independence assumptions. We represent the space of user intentions via a probabilistic ontology tree (POT) which is a tree-structured BN whose structure is directly derived from the hierarchical concept structure of the domain specified via an IS-A/HAS-A ontology. The specialization (IS-A) and composition (HAS-A) relationships between the domain concepts are intuitive and provide a systematic way of representing ontological knowledge for a wide range of domains.

The remainder of the paper is structured as follows. We begin by describing the construction of the POT given a domain ontology. We show how a POT employs null semantics to represent consistent user intentions based on the specialization and composition constraints of the domain. We then show how standard inference algorithms can be tailored to exploit the characteristics of the POT to efficiently infer the m-best list of probable explanations of user intentions given the observa-
tions. The POT and the associated inference algorithm empower a dialog manager (DM) to account for uncertainty while avoiding the design complexity, intractability issues, and other restrictive assumptions that characterize state-of-the-art systems. The section on empirical evaluation describes experiments in a tourist information domain that compare the performance of the POT system to a frame-based baseline system. The paper concludes with a discussion of related work.

2 Problem Formulation

Let \(\{X_1, X_2, \ldots, X_N\} \) be a set of \(N \) concepts. Every concept \(X_i \) takes its value from its finite discrete domain \(D(X_i) \) which includes a special null element for the cases where \(X_i \) is irrelevant. The user intention space is defined as \(\mathcal{U} = D(X_1) \times D(X_2) \times \cdots \times D(X_N) \). At each dialog turn \(t \), the system makes a noisy observation \(o_t \) about the true user intention \(u \in \mathcal{U} \). \(o_t \) consists of a set of slots. A slot is a tuple \(\langle v, d, c \rangle \) where \(v \in \{X_1, \ldots, X_N\} \), \(d \in D(v) \) is a value of \(v \), and \(c \in \mathbb{R} \) is the confidence score assigned to that concept-value combination by the speech understanding (SU) system.

The goal of belief tracking is to maintain \(\Pr(X_1, \ldots, X_N|o_1, \ldots, o_t) \), a distribution over the \(N \)-dimensional space \(\mathcal{U} \) conditioned on all the observations made up to turn \(t \). At each turn, the belief is updated based on the new observations to estimate the true, unobserved, user intention.

3 Probabilistic Ontology Trees

We model the space of the user intentions via a POT. A POT is a tree-structured BN that extends a domain ontology by specifying probability distributions over its possible instantiations based on specializations and compositions.

3.1 Domain Ontology

To ensure that the corresponding POTs are tree-structured, we consider a restricted class of domain ontologies over concepts.

Definition 1. A domain ontology is a labeled directed acyclic graph. The set of vertices (corresponding to the domain concepts) is partitioned into \(\{V_0\}, V_S, \) and \(V_C \), where \(V_0 \) is the only root node, \(V_S \) is the set of specialization nodes (related via \text{IS-A} to their parents), and \(V_C \) is the set of composition nodes (related via \text{HAS-A} to their parents). The set of edges satisfy the constraints that a specialization node has exactly one parent and a composition node may only have more than one parent if they are all specialization nodes with a common parent.

Specialization nodes represent refinements of their parent concepts. Specializations of a concept are disjoint, that is, for any particular instance of the parent exactly one specialization is applicable and the rest are inapplicable. For example, if Dog \text{IS-A} Animal and Cat \text{IS-A} Animal, then Cat is inapplicable when Dog is applicable, and vice versa. Composition nodes represent attributes of their parents and may be essential or nonessential, e.g., Dog \text{HAS-A} Color (essential), Dog \text{HAS-A} Tail (nonessential). These definitions correspond with the standard semantics in the knowledge representation community (Noh et al., 2003). An example ontology is shown in Figure 1.

Definition 2. A specialization subtree (spec-tree) in the ontology is a subtree consisting of a node with its specialization children (if any).

3.2 POT Construction

We now describe how a POT may be constructed from a domain ontology. The purpose of the POT is to maintain a distribution of possible instantiations of the ontology such that the ontological structure is respected.

Figure 1: The ontology for a sample domain where B \text{IS-A} A, C \text{IS-A} A, D \text{IS-A} A, E \text{IS-A} B, F \text{IS-A} B, C \text{HAS-A} G (essential), D \text{HAS-A} G (nonessential), H \text{IS-A} D, E \text{HAS-A} I (essential), J \text{IS-A} G, and K \text{IS-A} A. Specialization nodes are drawn single-lined, composition nodes are drawn double-lined, and the root node is drawn triple-lined. Specialization subtrees are marked by dashed ovals.
Given an ontology \(G \), the corresponding POT is a tree-structured BN defined as follows:

Variables. Let \(T \) be a spec-tree in \(G \) with root \(R \). Unless \(R \) is a (non-root) specialization node with no specialization children, \(T \) is represented in the POT by a variable \(X \) with the domain

\[
D(X) = \begin{cases}
\{ \text{exists, null} \}, & \text{if } \text{Children}_T(R) = \emptyset \\
\text{Children}_T(R), & \text{if } R = V_0 \\
\text{Children}_T(R) \cup \{ \text{null} \}, & \text{otherwise.}
\end{cases}
\]

Edges. Let POT variables \(X \) and \(Y \) correspond to distinct spec-trees \(T_X \) and \(T_Y \) in \(G \). There is a directed edge from \(X \) to \(Y \) if and only if

- There is an edge from a node in \(T_X \) to a node in \(T_Y \) and the root of \(T_Y \) is not a leaf of a spec-tree.
- A leaf of \(T_X \) is the root of \(T_Y \).

Conditional Probability Tables (CPTs). If there is an edge from \(X \) to \(Y \) in the POT, then the CPTs satisfy the following conditions:

- If \(Y \) corresponds to a spec-tree rooted at one of the leaves of the spec-tree corresponding to \(X \), then
 \[
 \Pr(Y = \text{null}|X = Y) = 0
 \]
 \[
 \Pr(Y = \text{null}|X \neq Y) = 1
 \]

 where \(Y \) is the domain value of \(X \) corresponding to child \(Y \).

- If \(X \) corresponds to a spec-tree \(T \) rooted at \(R \) and \(Y \) corresponds to a spec-tree with a composition root node that is attached only to nodes in \(S \subseteq \text{Children}_T(R) \), then
 \[
 \Pr(Y = \text{null}|X = V) = 1
 \]

 for any domain value \(V \) of \(X \) corresponding to a node \(V \in \text{Children}_T(R) - S \).

- If \(Y \) corresponds to a spec-tree whose root is an essential composition node attached to a leaf \(V \) of the spec-tree corresponding to \(X \), then
 \[
 \Pr(Y = \text{null}|X = V) = 0
 \]

 where \(V \) is the domain value of \(X \) corresponding to the leaf \(V \).

We label a POT variable with that of the root of the corresponding spec-tree for convenience. The domain of a POT variable representing a spec-tree comprises the specialization children (node names in sanserif font) and the special value null; the null value allows us to render any node (except the root) inapplicable. Spec-trees comprising single nodes have the domain value exists to switch between being applicable and inapplicable. The CPT entries determine the joint probabilities over possible valid instantiations of the ontology and could be based on expert knowledge or learned from data. The conditions we impose on them (null semantics) ensure that inconsistent instantiations of the ontology have probability 0 in the POT. While the ontology might have undirected cycles involving the children of spec-trees, the corresponding POT is a tree because spec-trees in the ontology collapse into single POT nodes. The POT for the example domain is shown in Figure 2.

3.3 **Tourist Information POT**

For the empirical analysis, we designed a POT for a tourist information system that informs the user about places to shop, eat, get service, and displays relevant information such as the distance to an intended location. The user can also provide conversational commands such as stop, reset, undo, etc. The full ontology for the tourist information domain is shown in Figure 3 and the POT is in Figure 4. In the POT, Action is the root node, with
\(\mathcal{D}(\text{Action}) = \{\text{Venue, Command}\} \), and \(\mathcal{D}(\text{Venue}) = \{\text{Restaurant, Store, Service, null}\} \). All the composition (or attribute) nodes such as Hours and Rating are made children of Venue by construction. Since a Command is inapplicable when the \text{Action} is a Venue, we have \(\text{Pr} (\text{Command} = \text{null} \mid \text{Action} = \text{Venue}) = 1 \). The composition nodes (Cuisine, Street, etc.) have specializations of their own (such as Japanese and Greek for Cuisine), but are not shown for the sake of clarity. Since Cuisine is an essential attribute of Restaurant, \(\text{Pr} (\text{Cuisine} = \text{null} \mid \text{Venue} = \text{Restaurant}) = 0 \); moreover, \(\text{Pr} (\text{Cuisine} = \text{null} \mid \text{Venue} = \text{Service}) = 1 \) because Cuisine is not relevant for Service.

4 Inferring User Intention

We have seen how the POT provides the probabilistic machinery to represent domain knowledge. We now discuss how the POT structure can be leveraged to infer user intention based on the slots provided by the SU.

4.1 Soft Evidence

Every slot retrieved from the SU needs to be incorporated as observed evidence in the POT. We can set the associated node within the POT directly to its domain value as hard evidence when we know these values with certainty. Instead, we employ probabilistic observations to soften the evidence entered into the POT. We assume that the confidence score \(c \in [0, 100] \) of a slot corresponds to the degree of certainty in the observation. For an observed slot variable \(X \), we create an observation node \(\hat{X} \) on the fly with the same domain as \(X \) and make it a child of \(X \). If \(x \) is the observed value for slot \(X \), then the CPT of \(\hat{X} \) is constructed from the slot’s confidence score as follows:

\[
\text{Pr}(\hat{X} | X = x) = \begin{cases}
c(\|D(X)|-1)/100+1, & \hat{X} = x \\
1-c/100, & \hat{X} \neq x
\end{cases}
\]

The probability values are generated by linearly interpolating between the uniform probability value and 1 based on the confidence score. For the remaining values,

\[
\text{Pr}(\hat{X} | X \neq x) = \begin{cases}
1 - \varepsilon (\|D(X)|-1), & \hat{X} = X \\
\varepsilon, & \hat{X} \neq X \end{cases}
\]

where \(\varepsilon > 0 \). Since the confidence score gives an indication of the probability for the observed value of a slot but says nothing about the remaining values, the diagonal elements for the remaining values are near 1. We cannot make them exactly 1 because the observation node needs to coexist with possibly conflicting observations in the POT.

If the user confirms the current POT hypothesis, then observations corresponding to the current hypothesis (with CPTs proportional to the score of the confirmation) are added to the POT to enforce the belief. If the user denies the current hypothesis, then all observations corresponding to the current hypothesis are removed from the POT.

\(^1\text{In our experiments, we use } \varepsilon = 10^{-10}.\)
Figure 4: The POT for the tourist information domain. Assuming that \(D(\text{Cuisine}) = \{\text{Japanese}, \text{Greek}, \text{null}\} \) and \(D(\text{Street}) = \{\text{Castro}, \text{Elm}, \text{null}\} \), the shaded observation nodes represent the soft evidence for input slots \(\langle \text{Cuisine}, \text{Japanese}, 40 \rangle \) and \(\langle \text{Street}, \text{Castro}, 70 \rangle \).

The POT for the tourist information domain after getting two slots as input is shown in Figure 4. The attached nodes are set to the observed slot values and the evidence propagates through the POT as explained in the next section.

4.2 POT Inference

A probable explanation (PE) or hypothesis is an assignment of values to the variables in the POT, and the most probable explanation (MPE) within the POT is the explanation that maximizes the joint probability conditioned on the observed variables. The top \(m \) estimates of the user’s intentions correspond to the \(m \)-best MPEs. The design of the POT ensures that the \(m \)-best MPEs are all consistent across specializations, that is, exactly one specialization is applicable per node in a given PE; all inconsistent explanations have a probability of 0.

The \(m \)-best MPEs could be found naively using the Join-Tree algorithm to compute the joint distribution over all variables and then use that to find the top \(m \) explanations. The space required to store the joint distribution alone is \(O(n^N) \), where \(N \) is the number of nodes and \(n \) the number of values per node. Because the run time complexity is at least as much as this, it is impractical for any reasonably sized tree. However, we can get a significant speedup for a fixed \(m \) by using the properties of the POT.

Algorithm 1 uses a message-passing protocol, similar to many in the graphical models literature (Koller and Friedman, 2009), to simulate a dynamic programming procedure across the levels of the tree. In Algorithm 2, an MPE message is computed at each node \(X \) using messages from the children, and sent to the parent. The message from \(X \) is the function (or table) \(\psi_X(x, \mathcal{Z}) \) that represents the probabilities of the top \(m \) explanations, \(\mathcal{Z} \), of the subtree rooted at \(X \) for a particular value of \(X = x \). At the root node \(X_0 \) we try all values of \(x_0 \) to find the top \(m \) MPEs for the entire tree. Note that in step 7, we need
The marginal $P(Y|X, E)$ which can be efficiently computed by a parallel message-passing method. Evidence nodes can only appear as leaves because of our soft evidence representation, and are encompassed by the base case. The algorithm leverages the fact that the joint of any entire subtree rooted at a node that is null with probability 1 can be safely assumed to be null with probability 1.

At a POT node with at most n values and branching factor k, we do n maximizations over the product space of k nm-sized lists. Thus, the time complexity of Algorithm 1 on a POT with N nodes is $O(N (nm)^k)$ and the space complexity is $O(N mnk)$. (Insertion sort maintains a sorted list truncated at m elements to keep track of the top m elements at any time.) However, the algorithm is significantly faster on specialization nodes because only one child is applicable and needs to be considered in the maximization (Step 7). In the extreme case of a specialization-only POT, the time and space complexities both drop to $O(Nmn)$.

A similar algorithm for incrementally finding m-best MPEs in a general BN is given in Srinivas and Nayak (1996). However, our approach has the ability to leverage the null semantics in POTs resulting in significant speedup as described above. This is crucial because the run-time complexity of enumerating MPEs is known to be P^{PP}-Complete for a general BN (Kwisthout, 2008).

5 Empirical Evaluation

To test the effectiveness of our POT approach, we compare it to a frame-based baseline system for inferring user intentions.

The baseline system uses a hierarchical frame-based approach. Each frame maps to a particular user intention, and the frames are filled concurrently from the dialog observations. The slots from a turn overwrite matching slots received in previous turns. The baseline system uses the same ontology as the POT to ensure that it only produces consistent hypotheses, e.g., it never produces "Venue=Service, Cuisine=Japanese" because Service does not have a Cuisine attribute. When several hypotheses compete, the system selects the one with the maximum allocated slots. We implemented the POT engine based on the Probabilistic Network Library (Intel, 2005). It takes a POT specification as input, receives the ASR slots, and returns its m-best MPEs.

Using a tourism information spoken dialog system, we collected a corpus of 375 dialogs from 15 users. Each user conducted 25 dialogs according to prescribed scenarios. Scenario order was randomized for each user. The total number of user turns in the corpus is 720. Evaluation is performed by running these collected dialogs in batch and providing the ASR slots of each turn to both the baseline and POT belief-tracking systems. After each turn, both systems return their best hypothesis of the overall user intention in the form of a set of concept-value pairs. These hypotheses are compared to the true user intention expressed so far in the dialog (e.g., if the user wants...
Table 1: Precision/recall results comparing the baseline system against the POT-based system on the 25-scenario experiment. Results are averaged over all 15 users.

<table>
<thead>
<tr>
<th>System</th>
<th>Precision</th>
<th>Recall</th>
<th>F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>POT</td>
<td>Top hypothesis</td>
<td>0.84</td>
<td>0.81</td>
</tr>
<tr>
<td>POT</td>
<td>Top 2 hypotheses</td>
<td>0.87</td>
<td>0.84</td>
</tr>
<tr>
<td>POT</td>
<td>Top 3 hypotheses</td>
<td>0.89</td>
<td>0.85</td>
</tr>
<tr>
<td>POT</td>
<td>Top 4 hypotheses</td>
<td>0.91</td>
<td>0.86</td>
</tr>
<tr>
<td>POT</td>
<td>Top 5 hypotheses</td>
<td>0.92</td>
<td>0.86</td>
</tr>
<tr>
<td>Baseline</td>
<td></td>
<td>0.84</td>
<td>0.79</td>
</tr>
</tbody>
</table>

Table 1 shows the precision/recall results for the experiment based on comparing the set of true user intention concepts to the inferred hypotheses of the POT and baseline systems. With multiple hypotheses, we assume an oracle for selecting the hypothesis with highest F1 among the top m hypotheses. The average word error rate for all users is 29.6%. The POT system shows a 2% improvement in recall and F1 over the baseline. Figure 8 shows an example where the POT system is able to discard an incorrect observation about a restaurant based on the accumulated belief about bookstores. Additionally, using the m-best list beyond the top hypothesis could help enhance performance or guide useful clarification questions, as shown by the improved oracle performance when using the top 2–5 hypotheses. In this experiment, besides encoding attribute relevance (through null values), all of the CPTs are uniformly distributed. Thus, the performance of the POT could be further improved by training the CPTs on real data.

To assess the quality of likelihood returned by the POT as a belief confidence measure, we binned dialog turns according to the log-likelihood of the top hypothesis and then computed the F1 score of each bin. Figure 6 shows that belief log-likelihood is indeed a good predictor of the F1 score. This information could be very useful to a dialog manager to trigger confirmation or clarification questions for example.

6 Discussion

The definition and construction of POTs provide a principled and systematic way to construct probabilistic models for an SDS. While any BN can be used to model the space of user intentions, designing an effective network is not an easy task for system designers not well versed in graphical models. In previous belief tracking work, researchers describe their networks with little indication on how they arrived at the specific structure (Paek and Horvitz, 2000; Thomson and Young, 2009). The main contribution of this paper is the POT semantics with support for both specialization and composition relationships. Prior work on concept ontologies for SDSs (van Zanten, 1998; Noh et al., 2003) as well as the prominence of ontologies and IS-A/HAS-A data structures in other areas such as object-oriented programming and knowledge engineering make them a natural and intuitive way of representing SDS domains. In terms of expressive power, POTs lie between generic BNs and the independent concept approach, and are very straightforward to design. The null semantics allow a POT to capture disjoint values and the applicability of attributes which are common aspects of concept ontologies. This work builds on past research on constructing Bayesian Networks based on ontological knowledge (Helsper and van der Gaag, 2002; Pfeffer et al., 1999). Obviously, a POT cannot capture all types of concept relationships since each concept can have only one parent. However, this restriction allows us to perform efficient exact computation of the m-best MPEs which is a significant advantage. Statistical Relational Learning approaches such as Markov Logic Networks (Richardson and Domingos, 2006) have been developed for more general relational models than strict ontologies, but they lack the parsimony and efficiency of POTs.
In the dialog systems community, while most approaches to belief tracking make a strict independence assumption between concepts (Bohus and Rudnicky, 2006; Williams, 2006), POT models dependencies between concepts connected by a IS-A or HAS-A relationship, while remaining significantly more tractable than general BNs.

Thomson and Young (2009) describe an approach to dialog management based on a Partially Observable Markov Decision Process (POMDP) whose policy only depends on individual concepts’ marginal distributions, rather than on the overall user intention. Because their system performs belief tracking with a dynamic Bayesian network (DBN) rather than a static BN, exact marginal computation is intractable and the authors use loopy belief propagation (LBP) to compute the marginals. Even then, Thomson and Young (2009) indicate that the dependencies of the subgoals must be limited to enable tractability. In practice, all concepts are made independent except for the binary validity nodes that deterministically govern the dependence between nodes and is similar to the null semantics of a POT. Williams (2007) also represents the user goal as a DBN for a POMDP-based DM. They perform belief updating using a particle filter, and their method approximates the joint probability over the user intention with the product of the concept marginals. This could lead to inaccurate estimation for conditionally dependent concepts.

Among authors who have used m-best lists of dialog states for dialog management, Higashinaka et al. (2003) have shown empirically that maintaining multiple state hypotheses facilitates shorter dialogs. Their system scores each dialog state using a linear combination of linguistic and discourse features, and this score is used by a handcrafted dialog policy. While illustrating the advantages of m-best lists, this scoring approach lacks the theoretical foundation and ability to include prior knowledge that POTs inherit from BNs.

7 Conclusion

In this paper, we described the POT approach to belief tracking for an SDS. We extended a IS-A/HAS-A concept ontology into a POT, a tree-structured Bayesian Network. We presented a new real-time algorithm to compute the m-best MPEs using their exact joint probability. A POT balances the trade-off between representing concept dependencies and efficiently maintaining the m-best list of user intentions based on their exact joint probability rather than approximations such as concept marginals.

References

A Analysis of the Inference Algorithm

Theorem 1. Algorithm 1 returns the top m MPEs of the POT along with their joint probabilities.

Proof. We first prove this for the special case of $m = 1$ to simplify notation. For the base case of a node with no children, Algorithm 2 simply returns a message with all probabilities at 1 for all values of that node. Now, consider a node X with children Y_1, \ldots, Y_k. Let $\text{Desc}(Y)$ be the descendants of node Y. Since Algorithm 2 given node X returns exactly one explanation, z for each $x \in \mathcal{D}(X)$, we will define $\psi_X(x) = \psi_X(x, z)$. Now, to show that $\psi_X(x) = \max_{\text{Desc}(X)} \Pr(\text{Desc}(X)|X = x, E)$, that is, Algorithm 2 returns the top explanation of the entire subtree rooted at X for every value in $\mathcal{D}(X)$, we use structural induction on the tree.

$$
\max_{\text{Desc}(X)} \Pr(\text{Desc}(X)|X = x, E)
= \max_{Y_1, \ldots, Y_k, \text{Desc}(Y_1, \ldots, Y_k)} \Pr(Y_1, \ldots, Y_k, \text{Desc}(Y_1, \ldots, Y_k)|X = x, E)
= \max_{Y_1, \ldots, Y_k, \text{Desc}(Y_1, \ldots, Y_k)} \prod_i \Pr(Y_i|X = x, E) \Pr(\text{Desc}(Y_i)|Y_i, E)
= \prod_i \max_{Y_i, \text{Desc}(Y_i)} \left[\Pr(Y_i|X = x, E) \max_{\text{Desc}(Y_i)} \Pr(\text{Desc}(Y_i)|Y_i, E) \right]
= \prod_i \max_{Y_i} \left[\Pr(Y_i|X = x, E) \psi_{Y_i}(y_i) \right] \{\text{Inductive step}\}
= \psi_X(x).
$$

The proof for $m > 1$, where every maximization returns a list of the top m elements, is similar. □

B Example Dialogs

Example scenarios are:

- Find a good and cheap Mexican restaurant in Mountain View.
- There is a medical emergency and you need to get to the hospital. Find a route.
- You need to find your favorite coffee franchise. You have 10 minutes to get coffee.
- Find a place to buy some fruits and vegetables.
- Find a Chinese restaurant in Santa Clara with good ambiance, and display travel distance.
- Find an ATM on Castro Street in Mountain View.
<table>
<thead>
<tr>
<th>User</th>
<th>Find a Mexican restaurant in Mountain View. [Note: Mexican misrecognized as Italian]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypothesis</td>
<td>[area mountain view] [cuisine italian]</td>
</tr>
<tr>
<td>User</td>
<td>No Mexican.</td>
</tr>
<tr>
<td>Hypothesis</td>
<td>[area mountain view] [cuisine mexican]</td>
</tr>
<tr>
<td>User</td>
<td>Show me ones with at least four star rating.</td>
</tr>
<tr>
<td>Hypothesis</td>
<td>[area palo alto] [cuisine mexican] [rating four star]</td>
</tr>
<tr>
<td>User</td>
<td>I want a cheap place.</td>
</tr>
<tr>
<td>Hypothesis</td>
<td>[area palo alto] [cuisine mexican] [rating four star] [price cheap]</td>
</tr>
<tr>
<td>User</td>
<td>Is there anything on Castro Street?</td>
</tr>
<tr>
<td>Hypothesis</td>
<td>[area mountain view] [street castro] [cuisine mexican] [rating four star] [price cheap]</td>
</tr>
</tbody>
</table>

Figure 7: An example dialog with the system hypothesis in the tourism information domain.

<table>
<thead>
<tr>
<th>User utterance</th>
<th>Where is the bookstore?</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASR</td>
<td>where is the bookstore</td>
</tr>
<tr>
<td>True hypothesis</td>
<td>[action find] [find store] [sell book]</td>
</tr>
<tr>
<td>Baseline hypothesis</td>
<td>[action find] [find store] [sell book]</td>
</tr>
<tr>
<td>POT hypothesis</td>
<td>[action find] [find store] [sell book]</td>
</tr>
<tr>
<td>User utterance</td>
<td>Store on market street.</td>
</tr>
<tr>
<td>ASR</td>
<td>store on market street</td>
</tr>
<tr>
<td>True hypothesis</td>
<td>[action find] [find store] [sell book] [street market]</td>
</tr>
<tr>
<td>Baseline hypothesis</td>
<td>[action find] [find store] [sell book] [street market]</td>
</tr>
<tr>
<td>POT hypothesis</td>
<td>[action find] [find store] [sell book] [street market]</td>
</tr>
<tr>
<td>User utterance</td>
<td>In downtown.</td>
</tr>
<tr>
<td>ASR</td>
<td>dennys</td>
</tr>
<tr>
<td>True hypothesis</td>
<td>[action find] [find store] [sell book] [street market] [area downtown]</td>
</tr>
<tr>
<td>Baseline hypothesis</td>
<td>[brand dennys] [cuisine american]</td>
</tr>
<tr>
<td>POT hypothesis</td>
<td>[action find] [find store] [sell book] [street market]</td>
</tr>
</tbody>
</table>

Figure 8: An example dialog showing the baseline, POT, and true hypotheses. The POT is able to correctly discard the inconsistent observation in the third turn with the observations in previous turns.